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Introduction

The Deep Learning textbook by Ian Goodfellow and Yoshua Bengio and Aaron
Courville, MIT Press, 2016 is an excellent resource intended to help students and
practitioners enter the field of machine learning in general and deep learning in
particular.

The online version of the book is available online for free.

Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with a focus
on enabling fast experimentation.

I will not cover all material in the notes and during the werkcollege it is possible to
concentrate on

• Refreshing Differential Calculus

• Refreshing Linear Algebra

• Simulating Neural Networks in a Python environment
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Prelude: Machine learning: what would we like to predict

Classification. Consider a set of images of dogs,plants and houses.

Task Map an image to scores of a label, i.e., a vector (.8, .1, .1) indicates 80% it is
a dog, 10% it is a plant and 10 % it is a house.

Data representation An image consists pixels with a number between 0 (= black)
and 255 (= white) at each pixel. A color picture is similar with three color
channels overlayed. For example, a color picture of 248 times 400 pixels consists of

248× 400× 3 = 297600 numbers between 0 and 255 each.

A flattened image is a vector in Rp (Here p = 297600).

We can compare images by comparing the (metric) distance in Rp.

A set of images can be represented by a cloud of points in Rp.
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Prelude: Machine learning II

Training set
T =

{
x(i) ∈ Rp, y(i) ∈ {1, 2, 3} | 1 ≤ i ≤ N

}
.

Note that in this representation the score vector of x(i) is a vector with all zeros
except for a 1 at the y(i)-coordinate.

Challenge How to create a rule

F : Rp → R3

that maps a given image to a score vector.

Model Architecture Consider an affine classifier

F (x) = Wx+ b

where W is a 3× p-matrix and b is 3-vector.
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Prelude: Machine learning III

For example if p = 4 we could have for F (x) = Wx+ b

F (x) =

0.2 −0.5 0.1 2.0
1.5 1.3 2.1 0.0
0.0 0.25 0.2 −0.3




56
231
24
2

+

 1.1
3.2
−1.2

 =

−96.8
437.9
61.95



with x = (56, 231, 24, 2)T a flattened image with four pixels.

Recall that matrix multiplication of a matrix and a vector corresponds to taking
the inner product of a row of the matrix and the vector.

Therefore every row of the matrix W is a classifier (template) for one of the classes

Template matching taking the inner product of a template and a flattened image.
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Prelude: Machine learning IV

Learning Optimization of W and b by minimizing some loss or cost function on
the training set T . For example

C : R3p+3 → R

given by MSD (= Mean Square Distance)

C(W, b) =

m∑
i=1

∥∥F (x(i))− ey(i)
∥∥2

where m ≤ N . Later we will see other loss functions as well.
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Example - Decision Function

Consider the data

CD Rating 1 Rating 2 I like
1 1 4 No
2 1 5 No
3 1.5 4 No
4 2.5 1 No
5 2.5 1.5 No
6 2.5 3 No
7 2.5 5 Yes
8 3.5 4 Yes
9 3.5 5 Yes
10 4.5 4 Yes
11 4.5 5 Yes

Task Do I like a new CD with Rating 1 = Rating 2 = 3.
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Example - Decision Function II

Model Architecture: Bounded decision function F : R2 → R

F (x) = f(Wx+ b), W =
(
w11 w12

)
, b ∈ R

where f : R→ R is a given function.

For example, we can take the Sigmoid Function

f(x) =
1

1 + e−x
.

Analyse the data and the model architecture and derive a differential equation for
f .

Training set:
T =

{
x(i) ∈ R2, y(i) ∈ {0, 1} | 1 ≤ i ≤ 11

}
So, for example,

x(1) = (1, 4) and y(1) = 0, x(11) = (4.5, 5) and y(11) = 1
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Example - Decision Function III

Learning/Training: the decision function by minimizing a cost function
C : R3 → R

C(w11, w12, b) =

m∑
i=1

(
F (x(i))− y(i)

)2
(m ≤ 11).

Compute the partial derivatives of the loss function C with respect to w11, w12, b

∂

∂w11

(
F (x(i))− y(i)

)2
= 2
(
F (x(i))− y(i)

) ∂

∂w11
F (x(i))

= 2
(
F (x(i))− y(i)

) ∂

∂w11
f(w11x

(i)
1 + w12x

(i)
2 + b)

= 2
(
F (x(i))− y(i)

)
f ′(w11x

(i)
1 + w12x

(i)
2 + b)x

(i)
1

Similarly we can compute the other derivatives and the gradient ∇C of C.
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Example - Decision Function IV

Stochastic Gradient Descend (SGD)

1. initialize w11, w12 and b at random

2. pick a random example from the training set x(i), y(i) and take m = 1 in the
definition of the loss function

3. compute the gradient ∇C of the loss function C

4. update w11, w12 and b by

w11 := w11 − α
∂C

∂w11

w12 := w12 − α
∂C

∂w12

b := b− α∂C
∂b

5. Go back to step 2
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Example - Decision Function V

After we have learned the decision function by minimizing the loss function we can
compute the decision boundary function.

The Decision Boundary are the values of x that give{
x ∈ R2 | F (x) = 1/2

}
Now add data

CD Rating 1 Rating 2 I like
12 1 1 Yes
13 1 1.5 Yes
14 1.5 1 Yes
15 5 1.5 Yes

and plot the complete data set.

What can you say about the decision boundary function.
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Intermezzo: Differential Calculus - Linear Maps

A map A : Rn → Rm is called a linear transformation (linear operator) if

A(x+ y) = A(x) +A(y), A(λx) = λA(x)

for every x, y ∈ Rn and λ ∈ R.

The standard matrix (aij) of A is the matrix given with respect to the standard
basis e1, . . . , en and ẽ1, . . . , ẽm in, respectively, Rn and Rm.

Note that the elements of the standard matrix are given by inner products

aij = 〈Aej, ẽi〉

and hence the j-th column of the matrix (aij) equals Aej.

If A is symmetric A = AT , then there exists an orthonormal bases of eigenvectors
such that the matrix representation of A with respect to this basis becomes
diagonal.
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Intermezzo: Differential Calculus - Differentiation

Recall that a function f : R→ R is differentiable in x if the limit

A = lim
h→0

f(x+ h)− f(x)

h

exists. The value A we denote by f ′(x).

In order to adapt this definition to functions of more variables, we have to
reformulate this definition: a function f is differentiable in x if there exists a real
A such that

lim
h→0

|f(x+ h)− f(x)−Ah|
|h|

= 0.

Let E ⊂ Rn be an open set and consider a function f : E → Rm in n variables
with values in Rm.

We call f differentiable in x if there exists a linear transformation A : Rn → Rm
such that

lim
h→0

‖f(x+ h)− f(x)−Ah ‖
‖h‖

= 0

Note that h now denotes a vector in Rn. We write A = f ′(x) = Df(x)
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Intermezzo: Differential Calculus - Differentiation II

Check that a linear transformation F : Rn → Rm is differentiable on Rn and
F ′(x) = F for every x ∈ Rn.

Consider the function F : R3 → R2 defined by

F (x, y, z) =

(
x3 + y2

y + z

)
Note that

F (x+ h, y + k, z + l)− f(x, y, z) =

(
3x2h+ 3xh2 + h3 + 2yk + k2

k + l

)
=

=

(
3x2 2y 0
0 1 1

)hk
l

+

(
3xh2 + h3 + k2

0

)
Check that we can define

A =

(
3x2 2y 0
0 1 1

)
and that F is differentiable in (x, y, z) with derivative A.
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Intermezzo: Differential Calculus - Directional derivative

In order to derive a matrix representation of the derivative, we first consider
directional derivaties.

Let E ⊂ Rn and F : E → Rm be differentiable with derivative DF (x).

Check that if v ∈ Rn with ‖v‖ = 1, then

lim
t→0

F (x+ tv)− F (x)

t
= DF (x)v.

We can define the directional derivative of F in direction v by

DvF (x) := lim
t→0

F (x+ tv)− F (x)

t

and
∂F (x)

∂xj
= DjF (x) := DejF (x).

If F is differentiable in x, then the standard matrix of DF (x) is called the
Jacobian of F at x.
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Intermezzo: Differential Calculus - The chain rule

Let E ⊂ Rn and D ⊂ Rm open sets and f : E → Rm and g : D → Rk given
functions. We assume that f [E] ⊂ D so that the composition
F := g◦f : E → Rk is well defined.

Chain rule If f is differentiable in x0 ∈ E and g is differentiable in y0 = f(x0),
then is the composition F = g ◦ f differentiable in x0 and

F ′(x0) = g′(y0) ◦ f ′(x0).

The chain rule allows us to express the partial derivatives of DjFi(x0) in terms of
the partial derivatives of g and f and we have (check) that

DjFi(x0) =

m∑
ν=1

Dνgi(y0)Djfν(x0),

or
∂Fi
∂xj

(x0) =

m∑
ν=1

∂gi
∂yν

(y0)
∂fν
∂xj

(x0).
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Intermezzo: Differential Calculus - The gradient

Let F : Rn → R. Suppose that F is differentiable in x. By definition the gradient
of F in x equals the vector

∇F (x) = JF (x)T = (D1F (x), . . . , DnF (x))T .

Check that If F is differentiable in x, then

F ′(x)h = 〈∇f(x), h〉, h ∈ Rn.

Note that the directional derivative DvF (x) is maximal if v (with ‖v‖ = 1) is in
the same direction as ∇F (x), indeed

〈∇f(x), v〉 = ‖∇f(x)‖ · ‖v‖ cosϕ,

where ϕ denotes the angle between the vectors ∇F (x) and v.

Thus the gradient of F in x points in the direction of the maximal increase of the
function seen from x.
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A more complex classification problem

Classification Consider a set of images of digits 0, 1, 2, . . . , 9 and recall the data
representation of images.

Task Map images to scores of a label F : Rp → R10.

Model architecture The model can no longer be linear, images of digits do not add
up well, for example, two images of zeros could become an image of the digit eight.

What is the right class of functions to consider?

New idea 1: Consider continuous piecewise linear functions (CPL):

F (x) = W2 max{0,W1x+ b1}+ b2

where W1 is a q × p-matrix, b1 ∈ Rq and W2 is a 10× q-matrix, b2 ∈ R10.

This class of functions is already very large and has the universal approximation
property, but is not yet large enough.

New idea 2: The best way to create complex functions from simple functions is by
composition of functions.
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Example - continuous piecewise linear functions

Consider the XOR function defined by

XOR(0, 0) = 0, XOR(1, 0) = 1, XOR(0, 1) = 1, XOR(1, 1) = 0

and train a network on these four points in the training set

Model architecture
F (x1, x2) = w1x1 + w2x2 + b

Cost function (MSE)

C(w1, w2, b) =
1

4

∑
x∈T

(
y − F (x)

)2
=

1

4

(
b2 + (w1 + b− 1)2 + (w2 + b− 1)2 + (w1 + w2 + b)2

)
Compute the gradient of C and the minimum of C. This gives w1 = w2 = 0 and
b = 1/2.

So a affine model is not capable to represent the XOR function.
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Example - continuous piecewise linear functions II

Next consider a composition of two functions

Model architecture
F (z) = W max{0, wx+ b}+ c

Take

W =

(
1 1
1 1

)
, b =

(
0
−1

)
, w =

(
1 −2

)
, c = 0.

and check that F is given by

F (x,w, b,W, c) =
(
1 −2

)
max{0,

(
x1 + x2

x1 + x2 − 1

)
}

=
(
1 −2

)( x1 + x2
max{0, x1 + x2 − 1}

)
= x1 + x2 − 2 max{0, x1 + x2 − 1}

and models the XOR function.

Give a network interpretation of the function F .
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Summary - continuous piecewise linear functions

Continuous piecewise linear functions can model more complicated score functions

Two layers
F (x) = W2 max{0,W1x}

(how can we include the bias b in the matrix W1?)

Three layers
F (x) = W3 max{0,W2 max{0,W1x}}

Sizes of the matrices W1, W2 and W3 are called hyperparameters

Cross validation Divide the training set into 5 equal batches, use four of them for
training and one for validation, then iterate over which fold is the validation fold,
evaluate performance and update hyperparameters, and average over the different
folds

Loss function/Cost function

T = {(x(i), y(i)) | 1 ≤ i ≤ N}, C0(x
(i)) = L(x(i), y(i))

and

B ⊂ {x(1), . . . , x(N)}, C0(B) =
1

|B|
∑
x∈B

C0(x)
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Summary - Stochastic Gradient Descend (mini-batch)

Divide the training set in equal batches at random, take a batch Bi and compute

C0(Bi) =
1

|B|
∑
x∈B

C0(x)

and the gradient ∇C0(Bi) (a vector of the same size as the number of parameters
(weights) in the model (network)).

After completing a batch we update the all weights by minus a small multiple of
∇C0(Bi).

Note that ∇C0(Bi) is an estimate for ∇C0(T ).

After we have used all batches in the training set we have completed one epoch.

We can repeat this process for many epochs.

Typically we define the dataset into three sets: training, validation and testing.
We run through the training set for many epochs and after every epoch we update
the hyperparameters.
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Summary - Loss functions

Let T = {(x(i), y(i)) | 1 ≤ i ≤ N} a training set.

Loss function/Cost function: Support Vector Machine (SVM) Let sj = F (x(i))j a
score vector and

Li =
∑
j 6=y(i)

max{0, sj − sy(i) + ∆}.

For example, let s = [13,−7, 11]T the score vector and y(i) = 1. Take ∆ = 10.

Then
Li = max{0,−7− 13 + 10}+ max{0, 11− 13 + 10} = 8

The first term shows no data loss. Although the score function is highest at the
correct index it is not by sufficient margin ∆ (a hyperparameter).

Regularisation Weights are not unique, put penalty on large weights in the loss
function

L =
1

N

∑
i

Li + λ
∑
k,l

W 2
kl

The first term models data loss and the second regularisation loss.
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Feed forward neural network - the bookkeeping

Suppose there are L layers

F = FL ◦ FL−1 ◦ · · · ◦ F1

A node j in layer l receives an input z
(l)
j and sends an activation output

a
(l)
j = f (l)(z

(l)
j ) for 1 ≤ l ≤ L and the output of the network is a(L).

The model architecture is given in matrix terms by

z(l) = W (l)a(l−1) + b(l)

a
(l)
j = f (l)(z

(l)
j )

where f (l) is activation function (ReLu or Sigmoid) of layer l.

The output of layer l defines the function Fl by

Fl(a
(l−1)) = a(l)
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Feed forward neural network - back propagation

Let T = {(x(i), y(i)) | 1 ≤ i ≤ N} a training set and B ⊂ {x(1), . . . , x(N)} a
(random) batch of training input.

Let C0 be a given loss function

C0(B) =
1

2|B|
∑
x∈B

‖F (x)− y(x)‖2

where y(x) denotes the desired output of the network when the input is x ∈ B.

Compute the gradient of C0(B) by using the chain rule.

∂C0(B)

∂w
(L)
jk

=
∂C0(B)

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂w
(L)
jk

= (Fj(x)− yj(x))f (L)
′
(z

(L)
j )a

(L−1)
k
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Feed forward neural network - back propagation II

Similarly for l < L

∂C0(B)

∂w
(l)
jk

=
∂C0(B)

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

=
∂C0(B)

∂a
(l)
j

f (l)
′
(z

(l)
j )a

(l−1)
k

To compute
∂C0(B)

∂a
(l)
j

for l < L, we can use recursion and assume that

∂C0(B)

∂a
(l+1)
j

is known
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Feed forward neural network - back propogation II

From the chain rule and the model architecture

z(l) = W (l)a(l−1) + b(l)

a
(l)
j = f (l)(z

(l)
j )

we obtain

∂C0(B)

∂a
(l)
j

=
∑
i

∂C0(B)

∂a
(l+1)
i

∂a
(l+1)
i

∂a
(l)
j

=
∑
i

∂C0(B)

∂a
(l+1)
i

f (l+1)′(z
(l+1)
i )w

(l+1)
ij .

This way we can compute the complete gradient and update the weights

W := W − η∇C0(B).
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Singular Value Decomposition (SVD) - Data representation

Let A be a m× n-matrix of rank r.

Let Σ be m× n-matrix such that

Σ =

(
D 0
0 0

)
with

D = diag (σ1, σ2, . . . , σr), σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0

where σi =
√
λi with λi the eigenvalues of ATA.

There exist orthogonal matrices U (m×m) and V (n× n) such that

A = UΣV T

where V = [v1v2 · · · vn] with vi an orthogonal basis of eigenvectors of ATA.

Note
0 ≤ ‖Avi‖2 =

(
Avi
)T
Avi = vTi A

TAvi = vTi λivi = λi
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Singular Value Decomposition (SVD) - Example

Let A be a 3× 2 matrix given by

A =

 1 −1
−2 2
2 −2


and compute the SVD of A.

Compute the eigenvalues and eigenvectors of ATA

ATA =

(
9 −9
−9 9

)
and

det(ATA− λI) = (λ− 9)2 − 81 = λ(λ− 18)

At λ = 18

v1 =
1√
2

(
1 −1

)
At λ = 0

v2 =
1√
2

(
1 1

)
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Singular Value Decomposition (SVD) - Example II

So

V =
1√
2

(
1 1
1 −1

)
, Σ =

3
√

2 0
0 0
0 0


To find U note that AV = UΣ and

u1 =
1

3
√

2
Av1 =

1

3

 1
−2
2


To find u2 and u3 we have to find an orthogonal basis of the plane othogonal to u1

x1 − 2x2 + 2x3 = 0.

This yields

u1 =
1

3

 1
−2
2

 , u2 =
1√
5

2
1
0

 , u3 =
1√
45

−2
4
5
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Singular Value Decomposition (SVD) - Example II

Let A be a 2× 3 matrix given by

A =

(
3 2 2
2 3 −2

)
and compute the SVD of A.

Answer:

A =
1√
2

(
1 1
1 −1

)(
5 0 0
0 3 0

) 1/
√

2 1/
√

2 0

1/
√

18 −1/
√

18 4/
√

18
2/3 −2/3 −1/3
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Applications of SVD to image processing and statistics

Mean and Covariance

X = [x(1) · · ·x(N)] p×N matrix of observations

Define

m =
1

N

N∑
i=1

x(i), y(i) = x(i) −m

and the mean-deviation form

Y = [y(1) · · · y(N)]

The covariance matrix is given by

S =
1

N − 1
Y Y T p× p matrix

Here sjj is the variance of x
(i)
j , 1 ≤ j ≤ N and skj is the covariance of x

(i)
k and

x
(i)
j , 1 ≤ k ≤ N for k 6= j.
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Applications of SVD to image processing and statistics II

Find the mean and covariance of the observation data

x(1) =

1
2
1

 , x(2) =

 4
2
13

 , x(3) =

7
8
1

 , x(4) =

8
4
5



Idea Transform the observation data X with mean zero and covariance matrix S

x(i) = Uy(i), 1 ≤ i ≤ N

by an orthogonal transformation

y(i) = U−1x(i) = UTx(i)

such that the covariance matrix of the transformed data

Y = [y(1) · · · y(N)]

given by UTSU becomes diagonal.
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Applications of SVD to image processing and statistics III

In other words we need to find U such that

UTSU = D = diag(λ1, λ2, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

The eigenvectors corresponsing to λi, 1 ≤ i ≤ p, are called the principal
components of the data

Connection SVD If X is a p×N matrix of observations in mean-deviation form
and if

A =
1√
N − 1

XT ,

then ATA is the covariance matrix of X.

So the squares of the singular values of A are exaxtly the p eigenvalues of the
covariance matrix S of X and the right singular vectors of A are the principal
components of the observation data X.

Example

X =

(
14 22 6 3 2 20
12 6 9 15 13 5

)
Find the mean-deviation form and the sample covariance matrix.
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Face recognition using eigenfaces

Let X be a p×N matrix consisting of N flattened images

X = [x(1) · · ·x(N)], x(i) ∈ Rp

Let

m =
1

N

N∑
i=1

x(i), y(i) = x(i) −m

Let
Y = [y(1) · · ·x(N)], y(i) ∈ Rp,

the data in mean-deviation form and

ui, 1 ≤ i ≤ p, the principal components of the data

Let M be the number of significant singular values and given a new image z we
project the image onto the significant principal components

zk = uTk (z −m), 1 ≤ k ≤M

and the vector z = (z1, z2, . . . , zM)T describes the contribution of each eigenface
in representing the new image of a face.

Next apply the classification theory developed in this course to (transformed) data.
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Representing the data - Distance matrices

Multidimensional scaling (MDS) techniques are used to model distance data, for
example, from classification, as points in a Euclidean space B.

Figuur 1: Genetic distances, calculated according to the distribution of the mtDNA
haplogroup frequencies
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Multidimensional scaling (MDS)

Given a distance matrix M (M = MT with zeros on the diagonal) find vectors

Y =
[
y1, y2, . . . , yn

]
in Rq such that

mij = ‖yi − yj‖

Note that the solution is not unique and therefore we assume in addition that

n∑
i=1

Yik = 0 voor alle 1 ≤ k ≤ n (1)

Idea: Let B = Y Y T then because of the relations between norm and inner
product we have

m2
ij = bii + bjj − 2bij (2)

From (1) we derive the relation

n∑
i=1

bij = 0
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Multidimensional scaling (MDS) II

Therefore

n∑
i=1

m2
ij = trace(B) + nbjj en

n∑
j=1

m2
ij = trace(B) + nbii

and
n∑
j=1

n∑
i=1

m2
ij = 2n trace(B)

This shows that we can solve for bij

bij = −1

2

(
m2
ij −

1

n

n∑
j=1

m2
ij −

1

n

n∑
i=1

m2
ij +

1

n

n∑
j=1

n∑
i=1

m2
ij

)

This yields Y (B = Y Y T ) and using the eigenvalue decomposition of B:

B = V ΛV T

we arrive at
Y = Λ1/2V T .
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How to install Python and Keras

Ubuntu

Ubuntu is a Linux environment for Windows 10 which can be downloaded from
the Microsoft App Store

In Ubuntu 18.04 Python 3.6 should be pre-installed.

If the Ubuntu package list not updated for a while, type

sudo apt update

Python

If pip happens to be not installed in Ubuntu (18.04), type

sudo apt i n s t a l l python3−p i p

To check if you have the correct Python installation, type

p i p 3 −−v e r s i o n

This should return

p i p 9 . 0 . 1 from / u s r / l i b / python3 / d i s t−packages ( python 3 . 6 )
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How to install Python and Keras II

Jupyter

It is convenient to use Jupyter Notebooks when programming with Python and
Keras.

Jupyter can be installed as follows

p i p 3 i n s t a l l j u p y t e r l a b

Running Jupyter

To generate a browser link for Jupyter first go to the desired folder on your
computer (for example, the Documents folder) and start Jupyter as follows

cd /mnt/ c / U s e r s / User / Documents
j u p y t e r notebook
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How to install Python and Keras III

Keras

To Keras we first have to install Tensorflow backend using pip3

p i p 3 i n s t a l l t e n s o r f l o w

Next we install Keras using pip3

p i p 3 i n s t a l l k e r a s

Python packages

If Python packages such as numpy, scipy or matplotlib is not preinstalled, you can
install them using pip3

p i p 3 i n s t a l l numpy
p i p 3 i n s t a l l s c i p y
p i p 3 i n s t a l l m a t p l o t l i b
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Keras - Set up a neural network in Python

Define functions and classes

from numpy i m p o r t l o a d t x t
from k e r a s . models i m p o r t S e q u e n t i a l
from k e r a s . l a y e r s i m p o r t Dense

Data set (csv file): music.csv

The data set consists of rows

1 ,4 ,0
1 ,5 ,0
1 . 5 , 4 , 0
. . . .
4 . 5 , 5 , 1

Load the data set

d a t a s e t = l o a d t x t ( ’ music . csv ’ , d e l i m i t e r = ’ , ’ )
#s p l i t th e data i n t o i n p u t ( x ) and output ( y ) v a r i a b l e s
x = d a t a s e t [ : , 0 : 2 ]
y = d a t a s e t [ : , 2 ]

– Typeset by FoilTEX – 42



Keras - Set up a neural network in Python II

Define the model architecture

model = S e q u e n t i a l ( )
model . add ( Dense ( 4 , i n p u t d i m =2, a c t i v a t i o n =’ r e l u ’ ) )
model . add ( Dense ( 4 , a c t i v a t i o n =’ r e l u ’ ) )
model . add ( Dense ( 1 , a c t i v a t i o n =’ s igmoid ’ ) )

Compile the model

model . c o m p i l e ( l o s s =’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r =’Adam ’ ,
m e t r i c s =[ ’ accuracy ’ ] )

Train/Learn the model

model . f i t ( x , y , epochs = 15 , b a t c h s i z e =2)

Evaluate the model on the training set

p r e d i c t i o n s = model . p r e d i c t c l a s s e s ( x )
f o r i i n ran ge ( l e n (X ) ) :

p r i n t ( ’% s => %d ( e x p e c t e d %d ) ’ % ( x [ i ] . t o l i s t ( ) ,
p r e d i c t i o n s [ i ] , y [ i ] ) )
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Keras - Set up a neural network in Python III

Make predictions with the network on new data

model . p r e d i c t ( np . r e s h a p e ( np . a r r a y ( [ 3 , 3 ] ) , ( 1 , 2 ) ) )

Model summary and values of the weights

model . summary ( )

p r i n t ( model . l a y e r s [ 0 ] . g e t w e i g h t s ( ) )

p r i n t ( model . l a y e r s [ 1 ] . g e t w e i g h t s ( ) )

Keras is a high-level neural networks API, written in Python and was developed
with a focus on enabling fast experimentation and has extensive documentation.
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https://keras.io/

