The Mathematics of Deep Learning

Sjoerd Verduyn Lunel (Utrecht University)

Introduction

The Deep Learning textbook by Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT Press, 2016 is an excellent resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular.

The online version of the book is available online for free.
Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.

I will not cover all material in the notes and during the werkcollege it is possible to concentrate on

- Refreshing Differential Calculus
- Refreshing Linear Algebra
- Simulating Neural Networks in a Python environment

Prelude: Machine learning: what would we like to predict

Classification. Consider a set of images of dogs, plants and houses.
Task Map an image to scores of a label, i.e., a vector (.8,.1,.1) indicates 80% it is a dog, 10% it is a plant and 10% it is a house.

Data representation An image consists pixels with a number between 0 ($=$ black) and 255 ($=$ white) at each pixel. A color picture is similar with three color channels overlayed. For example, a color picture of 248 times 400 pixels consists of

$$
248 \times 400 \times 3=297600 \text { numbers between } 0 \text { and } 255 \text { each. }
$$

A flattened image is a vector in \mathbb{R}^{p} (Here $p=297600$).
We can compare images by comparing the (metric) distance in \mathbb{R}^{p}.
A set of images can be represented by a cloud of points in \mathbb{R}^{p}.

Prelude: Machine learning II

Training set

$$
T=\left\{x^{(i)} \in \mathbb{R}^{p}, y^{(i)} \in\{1,2,3\} \mid 1 \leq i \leq N\right\}
$$

Note that in this representation the score vector of $x^{(i)}$ is a vector with all zeros except for a 1 at the $y^{(i)}$-coordinate.

Challenge How to create a rule

$$
F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{3}
$$

that maps a given image to a score vector.
Model Architecture Consider an affine classifier

$$
F(x)=W x+b
$$

where W is a $3 \times p$-matrix and b is 3 -vector.

Prelude: Machine learning III

For example if $p=4$ we could have for $F(x)=W x+b$

$$
F(x)=\left(\begin{array}{cccc}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0.0 & 0.25 & 0.2 & -0.3
\end{array}\right)\left(\begin{array}{c}
56 \\
231 \\
24 \\
2
\end{array}\right)+\left(\begin{array}{c}
1.1 \\
3.2 \\
-1.2
\end{array}\right)=\left(\begin{array}{c}
-96.8 \\
437.9 \\
61.95
\end{array}\right)
$$

with $x=(56,231,24,2)^{T}$ a flattened image with four pixels.
Recall that matrix multiplication of a matrix and a vector corresponds to taking the inner product of a row of the matrix and the vector.

Therefore every row of the matrix W is a classifier (template) for one of the classes
Template matching taking the inner product of a template and a flattened image.

Prelude: Machine learning IV

Learning Optimization of W and b by minimizing some loss or cost function on the training set T. For example

$$
C: \mathbb{R}^{3 p+3} \rightarrow \mathbb{R}
$$

given by MSD (= Mean Square Distance)

$$
C(W, b)=\sum_{i=1}^{m}\left\|F\left(x^{(i)}\right)-e_{y^{(i)}}\right\|^{2}
$$

where $m \leq N$. Later we will see other loss functions as well.

Example - Decision Function

Consider the data

CD	Rating 1	Rating 2	I like
1	1	4	No
2	1	5	No
3	1.5	4	No
4	2.5	1	No
5	2.5	1.5	No
6	2.5	3	No
7	2.5	5	Yes
8	3.5	4	Yes
9	3.5	5	Yes
10	4.5	4	Yes
11	4.5	5	Yes

Task Do I like a new CD with Rating $1=$ Rating $2=3$.

Example - Decision Function II

Model Architecture: Bounded decision function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
F(x)=f(W x+b), \quad W=\left(w_{11} \quad w_{12}\right), b \in \mathbb{R}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given function.
For example, we can take the Sigmoid Function

$$
f(x)=\frac{1}{1+e^{-x}}
$$

Analyse the data and the model architecture and derive a differential equation for f.

Training set:

$$
T=\left\{x^{(i)} \in \mathbb{R}^{2}, y^{(i)} \in\{0,1\} \mid 1 \leq i \leq 11\right\}
$$

So, for example,

$$
x^{(1)}=(1,4) \text { and } y^{(1)}=0, \quad x^{(11)}=(4.5,5) \text { and } y^{(11)}=1
$$

Example - Decision Function III

Learning/Training: the decision function by minimizing a cost function $C: \mathbb{R}^{3} \rightarrow \mathbb{R}$

$$
C\left(w_{11}, w_{12}, b\right)=\sum_{i=1}^{m}\left(F\left(x^{(i)}\right)-y^{(i)}\right)^{2} \quad(m \leq 11) .
$$

Compute the partial derivatives of the loss function C with respect to w_{11}, w_{12}, b

$$
\begin{aligned}
\frac{\partial}{\partial w_{11}}\left(F\left(x^{(i)}\right)-y^{(i)}\right)^{2} & =2\left(F\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial w_{11}} F\left(x^{(i)}\right) \\
& =2\left(F\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial w_{11}} f\left(w_{11} x_{1}^{(i)}+w_{12} x_{2}^{(i)}+b\right) \\
& =2\left(F\left(x^{(i)}\right)-y^{(i)}\right) f^{\prime}\left(w_{11} x_{1}^{(i)}+w_{12} x_{2}^{(i)}+b\right) x_{1}^{(i)}
\end{aligned}
$$

Similarly we can compute the other derivatives and the gradient ∇C of C.

Example - Decision Function IV

Stochastic Gradient Descend (SGD)

1. initialize w_{11}, w_{12} and b at random
2. pick a random example from the training set $x^{(i)}, y^{(i)}$ and take $m=1$ in the definition of the loss function
3. compute the gradient ∇C of the loss function C
4. update w_{11}, w_{12} and b by

$$
\begin{aligned}
w_{11} & :=w_{11}-\alpha \frac{\partial C}{\partial w_{11}} \\
w_{12} & :=w_{12}-\alpha \frac{\partial C}{\partial w_{12}} \\
b & :=b-\alpha \frac{\partial C}{\partial b}
\end{aligned}
$$

5. Go back to step 2

Example - Decision Function V

After we have learned the decision function by minimizing the loss function we can compute the decision boundary function.

The Decision Boundary are the values of x that give

$$
\left\{x \in \mathbb{R}^{2} \mid F(x)=1 / 2\right\}
$$

Now add data

CD	Rating 1	Rating 2	I like
12	1	1	Yes
13	1	1.5	Yes
14	1.5	1	Yes
15	5	1.5	Yes

and plot the complete data set.
What can you say about the decision boundary function.

Intermezzo: Differential Calculus - Linear Maps

A map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation (linear operator) if

$$
A(x+y)=A(x)+A(y), \quad A(\lambda x)=\lambda A(x)
$$

for every $x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
The standard matrix $\left(a_{i j}\right)$ of A is the matrix given with respect to the standard basis e_{1}, \ldots, e_{n} and $\tilde{e}_{1}, \ldots, \tilde{e}_{m}$ in, respectively, \mathbb{R}^{n} and \mathbb{R}^{m}.

Note that the elements of the standard matrix are given by inner products

$$
a_{i j}=\left\langle A e_{j}, \tilde{e}_{i}\right\rangle
$$

and hence the j-th column of the matrix $\left(a_{i j}\right)$ equals $A e_{j}$.
If A is symmetric $A=A^{T}$, then there exists an orthonormal bases of eigenvectors such that the matrix representation of A with respect to this basis becomes diagonal.

Intermezzo: Differential Calculus - Differentiation

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in x if the limit

$$
A=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists. The value A we denote by $f^{\prime}(x)$.
In order to adapt this definition to functions of more variables, we have to reformulate this definition: a function f is differentiable in x if there exists a real A such that

$$
\lim _{h \rightarrow 0} \frac{|f(x+h)-f(x)-A h|}{|h|}=0 .
$$

Let $E \subset \mathbb{R}^{n}$ be an open set and consider a function $f: E \rightarrow \mathbb{R}^{m}$ in n variables with values in \mathbb{R}^{m}.

We call f differentiable in x if there exists a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-A h\|}{\|h\|}=0
$$

Note that h now denotes a vector in \mathbb{R}^{n}. We write $A=f^{\prime}(x)=D f(x)$

Intermezzo: Differential Calculus - Differentiation II

Check that a linear transformation $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable on \mathbb{R}^{n} and $F^{\prime}(x)=F$ for every $x \in \mathbb{R}^{n}$.

Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
F(x, y, z)=\binom{x^{3}+y^{2}}{y+z}
$$

Note that

$$
\begin{gathered}
F(x+h, y+k, z+l)-f(x, y, z)=\binom{3 x^{2} h+3 x h^{2}+h^{3}+2 y k+k^{2}}{k+l}= \\
=\left(\begin{array}{ccc}
3 x^{2} & 2 y & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)+\binom{3 x h^{2}+h^{3}+k^{2}}{0}
\end{gathered}
$$

Check that we can define

$$
A=\left(\begin{array}{ccc}
3 x^{2} & 2 y & 0 \\
0 & 1 & 1
\end{array}\right)
$$

and that F is differentiable in (x, y, z) with derivative A.

Intermezzo: Differential Calculus - Directional derivative

In order to derive a matrix representation of the derivative, we first consider directional derivaties.

Let $E \subset \mathbb{R}^{n}$ and $F: E \rightarrow \mathbb{R}^{m}$ be differentiable with derivative $D F(x)$.
Check that if $v \in \mathbb{R}^{n}$ with $\|v\|=1$, then

$$
\lim _{t \rightarrow 0} \frac{F(x+t v)-F(x)}{t}=D F(x) v
$$

We can define the directional derivative of F in direction v by

$$
D_{v} F(x):=\lim _{t \rightarrow 0} \frac{F(x+t v)-F(x)}{t}
$$

and

$$
\frac{\partial F(x)}{\partial x_{j}}=D_{j} F(x):=D_{e_{j}} F(x) .
$$

If F is differentiable in x, then the standard matrix of $D F(x)$ is called the Jacobian of F at x.

Intermezzo: Differential Calculus - The chain rule

Let $E \subset \mathbb{R}^{n}$ and $D \subset \mathbb{R}^{m}$ open sets and $f: E \rightarrow \mathbb{R}^{m}$ and $g: D \rightarrow \mathbb{R}^{k}$ given functions. We assume that $f[E] \subset D$ so that the composition $F:=g \circ f: E \rightarrow \mathbb{R}^{k}$ is well defined.

Chain rule If f is differentiable in $x_{0} \in E$ and g is differentiable in $y_{0}=f\left(x_{0}\right)$, then is the composition $F=g \circ f$ differentiable in x_{0} and

$$
F^{\prime}\left(x_{0}\right)=g^{\prime}\left(y_{0}\right) \circ f^{\prime}\left(x_{0}\right)
$$

The chain rule allows us to express the partial derivatives of $D_{j} F_{i}\left(x_{0}\right)$ in terms of the partial derivatives of g and f and we have (check) that

$$
D_{j} F_{i}\left(x_{0}\right)=\sum_{\nu=1}^{m} D_{\nu} g_{i}\left(y_{0}\right) D_{j} f_{\nu}\left(x_{0}\right)
$$

or

$$
\frac{\partial F_{i}}{\partial x_{j}}\left(x_{0}\right)=\sum_{\nu=1}^{m} \frac{\partial g_{i}}{\partial y_{\nu}}\left(y_{0}\right) \frac{\partial f_{\nu}}{\partial x_{j}}\left(x_{0}\right)
$$

Intermezzo: Differential Calculus - The gradient

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose that F is differentiable in x. By definition the gradient of F in x equals the vector

$$
\nabla F(x)=J_{F}(x)^{T}=\left(D_{1} F(x), \ldots, D_{n} F(x)\right)^{T}
$$

Check that If F is differentiable in x, then

$$
F^{\prime}(x) h=\langle\nabla f(x), h\rangle, \quad h \in \mathbb{R}^{n} .
$$

Note that the directional derivative $D_{v} F(x)$ is maximal if v (with $\|v\|=1$) is in the same direction as $\nabla F(x)$, indeed

$$
\langle\nabla f(x), v\rangle=\|\nabla f(x)\| \cdot\|v\| \cos \varphi
$$

where φ denotes the angle between the vectors $\nabla F(x)$ and v.
Thus the gradient of F in x points in the direction of the maximal increase of the function seen from x.

A more complex classification problem

Classification Consider a set of images of digits $0,1,2, \ldots, 9$ and recall the data representation of images.

Task Map images to scores of a label $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{10}$.
Model architecture The model can no longer be linear, images of digits do not add up well, for example, two images of zeros could become an image of the digit eight.

What is the right class of functions to consider?

New idea 1: Consider continuous piecewise linear functions (CPL):

$$
F(x)=W_{2} \max \left\{0, W_{1} x+b_{1}\right\}+b_{2}
$$

where W_{1} is a $q \times p$-matrix, $b_{1} \in \mathbb{R}^{q}$ and W_{2} is a $10 \times q$-matrix, $b_{2} \in \mathbb{R}^{10}$.
This class of functions is already very large and has the universal approximation property, but is not yet large enough.

New idea 2: The best way to create complex functions from simple functions is by composition of functions.

Example - continuous piecewise linear functions

Consider the XOR function defined by

$$
\operatorname{XOR}(0,0)=0, \operatorname{XOR}(1,0)=1, \operatorname{XOR}(0,1)=1, \operatorname{XOR}(1,1)=0
$$

and train a network on these four points in the training set
Model architecture

$$
F\left(x_{1}, x_{2}\right)=w_{1} x_{1}+w_{2} x_{2}+b
$$

Cost function (MSE)

$$
\begin{aligned}
C\left(w_{1}, w_{2}, b\right) & =\frac{1}{4} \sum_{x \in T}(y-F(x))^{2} \\
& =\frac{1}{4}\left(b^{2}+\left(w_{1}+b-1\right)^{2}+\left(w_{2}+b-1\right)^{2}+\left(w_{1}+w_{2}+b\right)^{2}\right)
\end{aligned}
$$

Compute the gradient of C and the minimum of C. This gives $w_{1}=w_{2}=0$ and $b=1 / 2$.

So a affine model is not capable to represent the XOR function.

Example - continuous piecewise linear functions II

Next consider a composition of two functions

Model architecture

$$
F(z)=W \max \{0, w x+b\}+c
$$

Take

$$
W=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), b=\binom{0}{-1}, w=\left(\begin{array}{ll}
1 & -2
\end{array}\right), c=0
$$

and check that F is given by

$$
\begin{aligned}
F(x, w, b, W, c) & =\left(\begin{array}{ll}
1 & -2
\end{array}\right) \max \left\{0,\binom{x_{1}+x_{2}}{x_{1}+x_{2}-1}\right\} \\
& =\left(\begin{array}{ll}
1 & -2
\end{array}\right)\binom{x_{1}+x_{2}}{\max \left\{0, x_{1}+x_{2}-1\right\}} \\
& =x_{1}+x_{2}-2 \max \left\{0, x_{1}+x_{2}-1\right\}
\end{aligned}
$$

and models the XOR function.
Give a network interpretation of the function F.

Summary - continuous piecewise linear functions

Continuous piecewise linear functions can model more complicated score functions
Two layers

$$
F(x)=W_{2} \max \left\{0, W_{1} x\right\}
$$

(how can we include the bias b in the matrix W_{1} ?)
Three layers

$$
F(x)=W_{3} \max \left\{0, W_{2} \max \left\{0, W_{1} x\right\}\right\}
$$

Sizes of the matrices W_{1}, W_{2} and W_{3} are called hyperparameters
Cross validation Divide the training set into 5 equal batches, use four of them for training and one for validation, then iterate over which fold is the validation fold, evaluate performance and update hyperparameters, and average over the different folds

Loss function/Cost function

$$
T=\left\{\left(x^{(i)}, y^{(i)}\right) \mid 1 \leq i \leq N\right\}, \quad C_{0}\left(x^{(i)}\right)=L\left(x^{(i)}, y^{(i)}\right)
$$

and

$$
B \subset\left\{x^{(1)}, \ldots, x^{(N)}\right\}, \quad C_{0}(B)=\frac{1}{|B|} \sum_{x \in B} C_{0}(x)
$$

Summary - Stochastic Gradient Descend (mini-batch)

Divide the training set in equal batches at random, take a batch B_{i} and compute

$$
C_{0}\left(B_{i}\right)=\frac{1}{|B|} \sum_{x \in B} C_{0}(x)
$$

and the gradient $\nabla C_{0}\left(B_{i}\right)$ (a vector of the same size as the number of parameters (weights) in the model (network)).

After completing a batch we update the all weights by minus a small multiple of $\nabla C_{0}\left(B_{i}\right)$.

Note that $\nabla C_{0}\left(B_{i}\right)$ is an estimate for $\nabla C_{0}(T)$.
After we have used all batches in the training set we have completed one epoch.
We can repeat this process for many epochs.
Typically we define the dataset into three sets: training, validation and testing. We run through the training set for many epochs and after every epoch we update the hyperparameters.

Summary - Loss functions

Let $T=\left\{\left(x^{(i)}, y^{(i)}\right) \mid 1 \leq i \leq N\right\}$ a training set.
Loss function/Cost function: Support Vector Machine (SVM) Let $s_{j}=F\left(x^{(i)}\right)_{j}$ a score vector and

$$
L_{i}=\sum_{j \neq y^{(i)}} \max \left\{0, s_{j}-s_{y^{(i)}}+\Delta\right\}
$$

For example, let $s=[13,-7,11]^{T}$ the score vector and $y^{(i)}=1$. Take $\Delta=10$.
Then

$$
L_{i}=\max \{0,-7-13+10\}+\max \{0,11-13+10\}=8
$$

The first term shows no data loss. Although the score function is highest at the correct index it is not by sufficient margin Δ (a hyperparameter).

Regularisation Weights are not unique, put penalty on large weights in the loss function

$$
L=\frac{1}{N} \sum_{i} L_{i}+\lambda \sum_{k, l} W_{k l}^{2}
$$

The first term models data loss and the second regularisation loss.

Feed forward neural network - the bookkeeping

Suppose there are L layers

$$
F=F_{L} \circ F_{L-1} \circ \cdots \circ F_{1}
$$

A node j in layer l receives an input $z_{j}^{(l)}$ and sends an activation output $a_{j}^{(l)}=f^{(l)}\left(z_{j}^{(l)}\right)$ for $1 \leq l \leq L$ and the output of the network is $a^{(L)}$.

The model architecture is given in matrix terms by

$$
\begin{aligned}
& z^{(l)}=W^{(l)} a^{(l-1)}+b^{(l)} \\
& a_{j}^{(l)}=f^{(l)}\left(z_{j}^{(l)}\right)
\end{aligned}
$$

where $f^{(l)}$ is activation function (ReLu or Sigmoid) of layer l.
The output of layer l defines the function F_{l} by

$$
F_{l}\left(a^{(l-1)}\right)=a^{(l)}
$$

Feed forward neural network - back propagation

Let $T=\left\{\left(x^{(i)}, y^{(i)}\right) \mid 1 \leq i \leq N\right\}$ a training set and $B \subset\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ a (random) batch of training input.

Let C_{0} be a given loss function

$$
C_{0}(B)=\frac{1}{2|B|} \sum_{x \in B}\|F(x)-y(x)\|^{2}
$$

where $y(x)$ denotes the desired output of the network when the input is $x \in B$.
Compute the gradient of $C_{0}(B)$ by using the chain rule.

$$
\begin{aligned}
\frac{\partial C_{0}(B)}{\partial w_{j k}^{(L)}} & =\frac{\partial C_{0}(B)}{\partial a_{j}^{(L)}} \frac{\partial a_{j}^{(L)}}{\partial z_{j}^{(L)}} \frac{\partial z_{j}^{(L)}}{\partial w_{j k}^{(L)}} \\
& =\left(F_{j}(x)-y_{j}(x)\right) f^{(L)^{\prime}}\left(z_{j}^{(L)}\right) a_{k}^{(L-1)}
\end{aligned}
$$

Feed forward neural network - back propagation II

Similarly for $l<L$

$$
\begin{aligned}
\frac{\partial C_{0}(B)}{\partial w_{j k}^{(l)}} & =\frac{\partial C_{0}(B)}{\partial a_{j}^{(l)}} \frac{\partial a_{j}^{(l)}}{\partial z_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial w_{j k}^{(l)}} \\
& =\frac{\partial C_{0}(B)}{\partial a_{j}^{(l)}} f^{(l)^{\prime}}\left(z_{j}^{(l)}\right) a_{k}^{(l-1)}
\end{aligned}
$$

To compute

$$
\frac{\partial C_{0}(B)}{\partial a_{j}^{(l)}}
$$

for $l<L$, we can use recursion and assume that

$$
\frac{\partial C_{0}(B)}{\partial a_{j}^{(l+1)}} \quad \text { is known }
$$

Feed forward neural network - back propogation II

From the chain rule and the model architecture

$$
\begin{aligned}
& z^{(l)}=W^{(l)} a^{(l-1)}+b^{(l)} \\
& a_{j}^{(l)}=f^{(l)}\left(z_{j}^{(l)}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\frac{\partial C_{0}(B)}{\partial a_{j}^{(l)}} & =\sum_{i} \frac{\partial C_{0}(B)}{\partial a_{i}^{(l+1)}} \frac{\partial a_{i}^{(l+1)}}{\partial a_{j}^{(l)}} \\
& =\sum_{i} \frac{\partial C_{0}(B)}{\partial a_{i}^{(l+1)}} f^{(l+1)^{\prime}}\left(z_{i}^{(l+1)}\right) w_{i j}^{(l+1)}
\end{aligned}
$$

This way we can compute the complete gradient and update the weights

$$
W:=W-\eta \nabla C_{0}(B)
$$

Singular Value Decomposition (SVD) - Data representation

Let A be a $m \times n$-matrix of rank r.
Let Σ be $m \times n$-matrix such that

$$
\Sigma=\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right)
$$

with

$$
D=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right), \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r} \geq 0
$$

where $\sigma_{i}=\sqrt{\lambda_{i}}$ with λ_{i} the eigenvalues of $A^{T} A$.
There exist orthogonal matrices $U(m \times m)$ and $V(n \times n)$ such that

$$
A=U \Sigma V^{T}
$$

where $V=\left[v_{1} v_{2} \cdots v_{n}\right]$ with v_{i} an orthogonal basis of eigenvectors of $A^{T} A$.
Note

$$
0 \leq\left\|A v_{i}\right\|^{2}=\left(A v_{i}\right)^{T} A v_{i}=v_{i}^{T} A^{T} A v_{i}=v_{i}^{T} \lambda_{i} v_{i}=\lambda_{i}
$$

Singular Value Decomposition (SVD) - Example

Let A be a 3×2 matrix given by

$$
A=\left(\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right)
$$

and compute the SVD of A.
Compute the eigenvalues and eigenvectors of $A^{T} A$

$$
A^{T} A=\left(\begin{array}{cc}
9 & -9 \\
-9 & 9
\end{array}\right)
$$

and

$$
\operatorname{det}\left(A^{T} A-\lambda I\right)=(\lambda-9)^{2}-81=\lambda(\lambda-18)
$$

At $\lambda=18$

$$
v_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
$$

At $\lambda=0$

$$
v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

Singular Value Decomposition (SVD) - Example II

So

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad \Sigma=\left(\begin{array}{cc}
3 \sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

To find U note that $A V=U \Sigma$ and

$$
u_{1}=\frac{1}{3 \sqrt{2}} A v_{1}=\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)
$$

To find u_{2} and u_{3} we have to find an orthogonal basis of the plane othogonal to u_{1}

$$
x_{1}-2 x_{2}+2 x_{3}=0 .
$$

This yields

$$
u_{1}=\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right), u_{2}=\frac{1}{\sqrt{5}}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), u_{3}=\frac{1}{\sqrt{45}}\left(\begin{array}{c}
-2 \\
4 \\
5
\end{array}\right)
$$

Singular Value Decomposition (SVD) - Example II

Let A be a 2×3 matrix given by

$$
A=\left(\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right)
$$

and compute the SVD of A.
Answer:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{18} & -1 / \sqrt{18} & 4 / \sqrt{18} \\
2 / 3 & -2 / 3 & -1 / 3
\end{array}\right)
$$

Applications of SVD to image processing and statistics

Mean and Covariance

$$
X=\left[x^{(1)} \cdots x^{(N)}\right] \quad p \times N \text { matrix of observations }
$$

Define

$$
m=\frac{1}{N} \sum_{i=1}^{N} x^{(i)}, \quad y^{(i)}=x^{(i)}-m
$$

and the mean-deviation form

$$
Y=\left[y^{(1)} \cdots y^{(N)}\right]
$$

The covariance matrix is given by

$$
S=\frac{1}{N-1} Y Y^{T} \quad p \times p \text { matrix }
$$

Here $s_{j j}$ is the variance of $x_{j}^{(i)}, 1 \leq j \leq N$ and $s_{k j}$ is the covariance of $x_{k}^{(i)}$ and $x_{j}^{(i)}, 1 \leq k \leq N$ for $k \neq j$.

Applications of SVD to image processing and statistics II

Find the mean and covariance of the observation data

$$
x^{(1)}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), x^{(2)}=\left(\begin{array}{c}
4 \\
2 \\
13
\end{array}\right), x^{(3)}=\left(\begin{array}{l}
7 \\
8 \\
1
\end{array}\right), x^{(4)}=\left(\begin{array}{l}
8 \\
4 \\
5
\end{array}\right)
$$

Idea Transform the observation data X with mean zero and covariance matrix S

$$
x^{(i)}=U y^{(i)}, \quad 1 \leq i \leq N
$$

by an orthogonal transformation

$$
y^{(i)}=U^{-1} x^{(i)}=U^{T} x^{(i)}
$$

such that the covariance matrix of the transformed data

$$
Y=\left[y^{(1)} \cdots y^{(N)}\right]
$$

given by $U^{T} S U$ becomes diagonal.

Applications of SVD to image processing and statistics III

In other words we need to find U such that

$$
U^{T} S U=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right), \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0
$$

The eigenvectors corresponsing to $\lambda_{i}, 1 \leq i \leq p$, are called the principal components of the data

Connection SVD If X is a $p \times N$ matrix of observations in mean-deviation form and if

$$
A=\frac{1}{\sqrt{N-1}} X^{T}
$$

then $A^{T} A$ is the covariance matrix of X.
So the squares of the singular values of A are exaxtly the p eigenvalues of the covariance matrix S of X and the right singular vectors of A are the principal components of the observation data X.

Example

$$
X=\left(\begin{array}{cccccc}
14 & 22 & 6 & 3 & 2 & 20 \\
12 & 6 & 9 & 15 & 13 & 5
\end{array}\right)
$$

Find the mean-deviation form and the sample covariance matrix.

Face recognition using eigenfaces

Let X be a $p \times N$ matrix consisting of N flattened images

$$
X=\left[x^{(1)} \cdots x^{(N)}\right], \quad x^{(i)} \in \mathbb{R}^{p}
$$

Let

$$
m=\frac{1}{N} \sum_{i=1}^{N} x^{(i)}, \quad y^{(i)}=x^{(i)}-m
$$

Let

$$
Y=\left[y^{(1)} \cdots x^{(N)}\right], \quad y^{(i)} \in \mathbb{R}^{p}
$$

the data in mean-deviation form and

$$
u_{i}, \quad 1 \leq i \leq p, \quad \text { the principal components of the data }
$$

Let M be the number of significant singular values and given a new image z we project the image onto the significant principal components

$$
z_{k}=u_{k}^{T}(z-m), \quad 1 \leq k \leq M
$$

and the vector $z=\left(z_{1}, z_{2}, \ldots, z_{M}\right)^{T}$ describes the contribution of each eigenface in representing the new image of a face.

Next apply the classification theory developed in this course to (transformed) data.

Representing the data - Distance matrices

Multidimensional scaling (MDS) techniques are used to model distance data, for example, from classification, as points in a Euclidean space B.

Figuur 1: Genetic distances, calculated according to the distribution of the mtDNA haplogroup frequencies

Multidimensional scaling (MDS)

Given a distance matrix $M\left(M=M^{T}\right.$ with zeros on the diagonal) find vectors

$$
Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]
$$

in \mathbb{R}^{q} such that

$$
m_{i j}=\left\|y_{i}-y_{j}\right\|
$$

Note that the solution is not unique and therefore we assume in addition that

$$
\begin{equation*}
\sum_{i=1}^{n} Y_{i k}=0 \quad \text { voor alle } 1 \leq k \leq n \tag{1}
\end{equation*}
$$

Idea: Let $B=Y Y^{T}$ then because of the relations between norm and inner product we have

$$
\begin{equation*}
m_{i j}^{2}=b_{i i}+b_{j j}-2 b_{i j} \tag{2}
\end{equation*}
$$

From (1) we derive the relation

$$
\sum_{i=1}^{n} b_{i j}=0
$$

Multidimensional scaling (MDS) II

Therefore

$$
\sum_{i=1}^{n} m_{i j}^{2}=\operatorname{trace}(B)+n b_{j j} \quad \text { en } \quad \sum_{j=1}^{n} m_{i j}^{2}=\operatorname{trace}(B)+n b_{i i}
$$

and

$$
\sum_{j=1}^{n} \sum_{i=1}^{n} m_{i j}^{2}=2 n \operatorname{trace}(B)
$$

This shows that we can solve for $b_{i j}$

$$
b_{i j}=-\frac{1}{2}\left(m_{i j}^{2}-\frac{1}{n} \sum_{j=1}^{n} m_{i j}^{2}-\frac{1}{n} \sum_{i=1}^{n} m_{i j}^{2}+\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n} m_{i j}^{2}\right)
$$

This yields $Y\left(B=Y Y^{T}\right)$ and using the eigenvalue decomposition of B :

$$
B=V \Lambda V^{T}
$$

we arrive at

$$
Y=\Lambda^{1 / 2} V^{T}
$$

How to install Python and Keras

Ubuntu

Ubuntu is a Linux environment for Windows 10 which can be downloaded from the Microsoft App Store

In Ubuntu 18.04 Python 3.6 should be pre-installed.
If the Ubuntu package list not updated for a while, type sudo apt update

Python

If pip happens to be not installed in Ubuntu (18.04), type
sudo apt install python3-pip

To check if you have the correct Python installation, type
pip3 --version

This should return
pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.

How to install Python and Keras II

Jupyter

It is convenient to use Jupyter Notebooks when programming with Python and Keras.

Jupyter can be installed as follows
pip3 install jupyterlab

Running Jupyter

To generate a browser link for Jupyter first go to the desired folder on your computer (for example, the Documents folder) and start Jupyter as follows cd /mnt/c/Users/User/Documents
jupyter notebook

How to install Python and Keras III

Keras

To Keras we first have to install Tensorflow backend using pip3
pip3 install tensorflow

Next we install Keras using pip3
pip3 install keras

Python packages

If Python packages such as numpy, scipy or matplotlib is not preinstalled, you can install them using pip3

$$
\begin{array}{ll}
\text { pip3 } & \text { install numpy } \\
\text { pip3 } & \text { install scipy } \\
\text { pip3 } & \text { install matplotlib }
\end{array}
$$

Keras - Set up a neural network in Python

Define functions and classes

from numpy import loadtxt
from keras.models import Sequential
from keras.layers import Dense

Data set (csv file): music.csv

The data set consists of rows
1,4,0
1,5,0
1.5,4,0
$4.5,5,1$

Load the data set

dataset $=$ loadtxt('music.csv', delimiter=',') \#split the data into input (x) and output (y) variables
$x=$ dataset [:, 0:2]
$y=$ dataset $[:, 2]$

Keras - Set up a neural network in Python II

Define the model architecture

model $=$ Sequential ()
model. add (Dense (4, input dim =2, activation='relu'))
model.add(Dense (4, activation='relu'))
model. add (Dense (1, activation='sigmoid'))

Compile the model

model. compile(loss='mean_squared_error', optimizer='Adam', metrics $=[$ 'accuracy '])

Train/Learn the model

model.fit (x, y, epochs $=15$, batch_size=2)

Evaluate the model on the training set

predictions $=$ model. predict_classes (x)
for i in range(len (X)):
print('\%s \Rightarrow \%d (expected \%d)' \% (x[i]. tolist (), predictions[i], y[i]))

Keras - Set up a neural network in Python III

Make predictions with the network on new data

model. predict (np. reshape (np.array ([3, 3]) , (1,2)))
Model summary and values of the weights
model.summary ()
print(model. Iayers [0].get_weights())
print(model. Iayers [1]. get_weights())

Keras is a high-level neural networks API, written in Python and was developed with a focus on enabling fast experimentation and has extensive documentation.

